Investigation of the decay property of extremely low-lying isomer ^{229m}Th <u>Y. Kasamatsu</u>¹, H. Kikunaga², K. Takamiya³, T. Mitsugashira⁴, T. Nakanishi², T. Ohtsuki⁴, H. Yuki⁴, W. Sato¹, H. Yamana³, Y. Ohkubo³, H. Kimura¹, S. Shibata³, Y. Kawase³, A. Shinohara¹ - ¹ Osaka University, Japan - ² Kanazawa University, Japan - ³ Kyoto University, Japan - ⁴ Tohoku University, Japan kasamatu@chem.sci.osaka-u.ac.jp ### Introduction The chemical and physical properties of the isomeric state of 229 Th, having the lowest excitation energy, is an interesting subject in both experiment and theory. Helmer and Reich reported that the excitation energy of 229 mTh is about 3.5 eV from the result of precise γ -ray spectroscopy for the α -decay of 233 U [1]. A simplified level scheme of 229 Th is shown in Fig.1. This level corresponds to a 3 2+ [631] Nilsson state while the ground state to a 5 2+ [633] one [2]. The emission of internal conversion electrons is forbidden because the excitation energy is lower than the first ionization energy of thorium atoms. Thus the deexcitation from 229 mTh to the ground state is expected to occur through a direct γ -ray transition. Furthermore, if the outer-shell electron of 229 mTh can be involved in the decay of 229 mTh nucleus, 229 mTh may decay via an electron bridge (EB) mechanism [3]. The diagram of EB mechanism is shown in Fig.2. This implies that the half-life of 229 mTh is dynamically variable depending on its chemical state. The photons emitted in a direct isomeric transition from this level to the ground state should have about 350 nm wavelength, and the photons involved in the transition via EB process are deduced to correspond to visible rays. However, there has been no direct observation for the transition of 229 mTh yet. The successful observation will allow us to research the details of EB mechanism. Figure 1. Level scheme of ²²⁹Th. Figure 2. Diagram of Electron Bridge Mechanism. The 233 U sample contains a given amount of 229m Th produced through an α -decay from 233 U with a branching ratio of about 1-2 percents. Several kinds of experiments were performed by other groups for the observation of photons emitted from the 233 U sample [4,5]. These observations were not successful, however, owing to the α -particle-induced fluorescence of the materials (nitrogen and quartz, etc.) around the radioactive sample [6]. We introduce a new photon detection system and an α -ray spectroscopic technique to investigate the decay property of ^{229m}Th. The ^{229m}Th samples were prepared by two different methods, chemical separation of decay product from ²³³U or ²²⁹Ac, and direct production by several nuclear reactions. Here preliminary results are reported. # **Experimental** The new method of production of 229 mTh was performed by novel method using several nuclear reactions: 228 Ra(n, γ) 229 Ra, 232 Th(γ ,p2n) 229 Ac, 230 Th(γ ,n) 229 Th, 232 Th(p,p3n) 229 Th and 230 Th(p,d) 229 Th. 229 Ra decays into 229 Ac ($T_{1/2}$ =~4m), and 229 Ac decays into 229 Th ($T_{1/2}$ =62.7m). In the decay process from 229 Ac, 229 mTh is expected to be produced with high probability. We tried to observe the decay from 229m Th directly by two different methods to investigate the decay mechanism of 229m Th. One is to detect the ultraviolet and visible photons from 229m Th. Although this attempt has not been successful yet, it is essential to investigate the EB mechanism. Photon measurement was performed only for 229 Th samples separated from 233 U or 229 Ac, because the detector was very sensitive to each radiation and thermal phenomenon. The other method is to detect the α particle emitted from 229m Th. We may observe the α rays from 229m Th, since the partial half-life of α -decay in 229m Th is considered to be shorter than that in 229 Th as will be mentioned below. The results obtained by the photon measurement can be attributed to the nuclear phenomenon by taking the results for the α -ray measurement into account. # 1) Sample preparation # a) α -decay from ²³³U The half-life of ^{229m}Th has not been determined experimentally yet, estimated in wide range from about ~10-2s to tens of hours [1,7]. Therefore we developed a rapid ion exchange apparatus so as to make successfully the measurement even when the lifetime was rather short. The experimental procedure is as follows. First ²³³U was adsorbed on an anion exchange resin layer in 8M hydrochloric acid solution. Making use of a chemical property that the daughter nuclides of ²³³U cannot be adsorbed to the resin layer, ²²⁹Th grown up during a certain time (Growth Time) was eluted and separated from ²³³U. It takes only a few minutes for this separation. Not only the elution peak but all the other range of the elution were also measured to confirm whether the photon emission derived from ^{229m}Th. The ^{229g}Th sample as well as the separated ²²⁹Th sample was measured under the almost same conditions to evaluate the effects of fluorescence of thorium atoms and those of radiation from ²²⁹Th nuclei. b) 228 Ra $(n,\gamma)^{229}$ Ra ²²⁸Ra was prepared by separating Ra from a ²³²Th sample in radio-equilibrium. The ²³²Th sample (thorium nitrate Th(NO₃)₄-5H₂O) was dissolved in 0.5M Nitric acid. All elements in the decay-chain of ²³²Th except Ra were precipitated by adding ammonia solution. After centrifuging Ra solution was obtained. Th was completely removed by anion exchange method. Then the ²²⁸Ra solution sample was dried up on a quartz boat. The neutron irradiation was performed in Kyoto University Reactor. ²²⁸Ra of about 220kBq was prepared as a target. Neutron flux was 2.8×10¹³ n/s. The duration of irradiation was 60 minutes. After irradiation the sample was rapidly dissolved in 2M HCl, and Ac was separated by a cation exchange method. We measured the γ -ray energy to ascertain the production of 229 Ac. The separated Ac solution sample was divided in half, one was assayed for α -ray measurement. The other was left for 3hours until 229 Th was grown fully. Th was isolated by the anion exchange method, and a part of that was assayed for photon measurement and the residual for α -ray measurement. c) 230 Th $(\gamma,n)^{229}$ Th $,^{232}$ Th $(\gamma,p2n)^{229}$ Ac About 30 μ g of 95% ²³⁰Th molecular-plated on a 5N aluminum plate was enclosed in a quartz tube for Bremsstrahlung irradiation. About 1.5g of ²³²Th oxide was also enclosed in a quartz tube and used as a target. The irradiation was carried out using the Electron Linear Accelerator of Tohoku University (Linac). The linac was operated at electron energies of 27 MeV with the beam pulse width of 3 μ s the peak current around 100 mA, and the pulse repetition rate of 300 s⁻¹. After the irradiation, thorium isotopes were chemically separated from the other nuclear reaction products and fission products by the anion exchange and cation exchange method. The thorium isotopes in the effluent were then coprecipitated with samarium trifluoride by adding 30 - 250 μ g samarium and hydrofluoric acid solution. d) 232 Th(p,p3n) 229 Th, 230 Th(p,d) 229 Th Proton irradiation was carried out with AVF Cyclotron at Research Center for Nuclear Physics in Osaka University. 770 μ g of 232 Th molecular-plated on a 5N aluminum plate was prepared as a target. Proton beam energy was 34-36 MeV, and the beam current was about 1 μ A. The duration of irradiation was 8 hours. About $5\mu g$ of 230 Th was used for irradiation. The target was exposed to about 14.8 MeV, $1\mu A$ proton beam for 8 hours. Another target was irradiated for 1 hour in the same beam condition. Immediately after the irradiation, this sample was measured by silicon detector without chemistry to confirm the production of 228 Th, Pa and Ac. At this beam energy it is expected that the nuclear reaction producing compound nuclei would be inhibited by the coulomb barrier, only 229 Th should be produced. Pa and fission products produced simultaneously were first removed by an anion exchange separation after the irradiation. After removal of aluminum by precipitation adding NaOH, the Th fraction was separated from Ac and other fractions by a cation exchange method. Acquired sample was coprecipitated with samarium, and assayed for an α -ray measurement. #### 2) Measurements #### a) Photon measurement Low noise photomultiplier (PM) was used for the photon detection. PM was installed in a PM cooler to lower the thermal noise. Further, the oval reflector was employed, as shown in Fig.3, to focus as many photons emitted from the sample as possible on the photocathode (5mm×8mm) of PM. The output signals from PM was transformed, through only Pre-Amplifier and Discriminator, to MCS-mode data collecting system. Figure 3. Photon detection system with oval reflector. The sample measured was usually solution put in a quartz tube (ϕ 8mm, 1cm). Several droplets of eluent at elution peak of thorium were collected in it. ## b) α -ray measurement The most favored α -transition from the ground state of ²²⁹Th feeds to the 5/2+[633] state at 236.3 keV level of the daughter ²²⁵Ra, and only rather weak α -transitions are observed in the higher energy range, as shown in the column for ²²⁹Th in Table 1. The transition from ²²⁹Th to the 149.96 keV 3/2+[631] level of ²²⁵Ra (E α =4.930 MeV) that is expected to be the most favored α -transition from ^{229m}Th has a branching ratio of only 0.16%. In addition, the α -transition to the parity coupled 3/2+ state at 42.77 keV that is assigned to the rotational band of the ground state of ²²⁵Ra (1/2+[631]) is also expected to be another favored α -transition from ^{229m}Th. As a result, the α -particles from ^{229m}Th have higher energies than those from ²²⁹Th. This implies that the partial half-life of the α -transition of ^{229m}Th is considerably shorter than that of ²²⁹Th, and that the α -particle might be observable when ^{229m}Th is produced by a suitable reaction. Table 1. Levels of 225 Ra and the α -transition ratio from 229 Th. | Orbit | Excitation Energy/keV | α -branch | | Eα/Mev | |-----------|-----------------------|-----------------------|--------------------|--------| | | | ²²⁹ Th (%) | ^{229m} Th | Eα/Mev | | [631]1/2+ | 0 | weak | favored | 5.079 | | 3/2+ | 42.77 | 0.24 | strong | 5.036 | | 5/2+ | 25.41 | 6.6 | favored | 5.053 | | 7/2+ | 111.60 | 5.97 | | 4.968 | | 9/2+ | 100.5 | 3.17 | | 4.978 | | [631]3/2+ | 149.96 | 0.16 | strong | 4.93 | | 5/2+ | 179.75 | 10.2 | weak | 4.901 | | 7/2+ | 243.6 | 5.0 | | 4.836 | | [633]5/2+ | 236.3 | 56.2 | weak | 4.845 | | 7/2+ | 267.9 | 9.3 | | 4.815 | | 9/2+ | 321.8 | 1.9 | | 4.761 | The sample for α -spectrometry was prepared by coprecipitating thorium isotope with samarium as fluoride or hydroxide on 0.1 μ m or 0.02 μ m pore size membrane filter. The precipitate was subjected to α -spectroscopy using a 450 or 900 mm² silicon detector. # **Results and Discussion** # 1) Photon measurement Photon emissions were observed for the solution samples separated from both ^{233}U and ^{229}Ac produced by $^{228}\text{Ra}(n,\gamma)^{229}\text{Ra}$ reaction. There was no decay component in the time dependence as shown in Fig.4. The eluent sample that is lying out of elution peak position also emitted a few visible or ultraviolet photons. It is difficult to attribute the origin of photon emission to ^{229m}Th nucleus. Figure 4. An exmaple of photon measurement result from ²²⁹Th solution sample chemically separated from ²³³U. Little photon emission was observed from 229g Th sample. The fluorescence of thorium atoms and the other photons derived from α -particle emission of 229g Th do not contribute to the detected photons. The transition energy of ^{229m}Th may lie out of the energy region of the present detector. Development of a spectroscope for one-photon counting is under consideration to distinguish the decaying component of a certain wavelength. We are measuring photons with the detector working in higher energy region. ## 2) α -ray measurement In the 228 Ra(n, γ) 229 Ra experiment, α -ray spectrum in the region of interest for 229 mTh was obscure because of the disturbance of the tail of α -ray peaks of 228 Th. γ -rays from 229 Ac (164.5 keV) were measured and the production of 229 Ac was ascertained. In the 230 Th(γ ,n) 229 Th and 232 Th(γ ,p2n) 229 Ac (see Fig.5) experiments, α -ray peak of 229 gTh appeared to be detected in the α -ray spectrum of both experiments. There were some peaks in the energy region of 229 mTh, but the contribution from 231 Pa disintegrated from 231 Th was not negligible for the experiment using 230 Th target. The half-life of 229 mTh would be too long as compared with the estimation, if the α -decay of 229 mTh were observed as well as 229 gTh. Figure 5. α -ray measurement result of ²²⁹Ac sample chemically purified from ²³²Th(γ ,p2n)²²⁹Ac reaction products. In the 232 Th(p,p3n) 229 Th (see Fig.6) and 230 Th(p,d) 229 Th experiments, α -rays from 229 gTh were observed. However, these of 229 mTh were not measured clearly. This result implies that the half-life may be shorter than a few hours. Figure 6. α -ray measurement result of ²²⁹Th sample chemically separated from ²³²Th(p,p3n)²²⁹Th reaction products. Consequently we could not observe the decay of ^{229m}Th or determine the half-life from the present results. Additional experiments and improvement of the detection methods are in progress. # References - [1] R. G. Helmer and C. W. Reich, Phys. Rev. C49, 1845(1994). - [2] D. G. Burke, P. E. Garrett, and T. Qu, Phys. Rev. C42,499 (1990). - [3] V. F. Strizhov and E. V. Tkalya, Sov. Phys. JETP 72, 387(1991). - [4] D. S. Richardson et al., Phys. Rev. Lett. 80, 3206 (1998). - [5] R. W. Shaw, J. P. Young, S. P. Cooper and O. F. Webb, Phys. Rev. Lett. 82, 1109 (1999). - [6] J. P. Young, R. W. Shaw and Oren F. Webb, Inorg. Chem. 38, 5192 (1999). - [7] A. M. Dykhne and E. V. Tkalya, JETP Lett. 67, 251 (1998).